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Abstract. Analysis of the effect of the electron-molecular vibration (EMV) coupling on the 
conductivity spectra of charge-transfer crystalline complexes is presented. Discussion is 
limited to the case of n-merized compounds, for which the localized electronic states should 
be treated explicitly. Theoretical conductivity spectra based on the linear response and 
vibronic adiabatic Mulliken theories are compared with the experimental data. An alterna- 
tive derivation of the linear response conductivity expression is presented. In addition, a 
simple method of calculation of the EMV coupling constants is proposed. 

1. Introduction 

In quasi-one-dimensional (Q-ID), highly conducting molecular solids the planar ion 
radical molecules stack to form conducting linear segregated chains. These charge- 
transfer (CT) molecular complexes create a unique opportunity for studies of inter- 
molecular interactions. The overlap of electronic wavefunctions along the stacks greatly 
exceeds interstack coupling, and therefore sharp anisotropy may be expected. Indeed, 
reflectance is almost frequency independent when the electric vector of external radi- 
ation is perpendicular to the stacks, but for parallel polarization one observes an over- 
damped electronic CT band and a number of lines with half-width about 100 cm-' at 
frequencies close (but not equal!) to those of totally symmetric (aR) vibronic modes of 
isolated molecules. The qualitative picture of this phenomenon was clear from the very 
beginning: an external electric field parallel to the stack direction changes the electronic 
density on each molecule and, because the atomic equilibrium positions depend on 
molecular charge, the variations in the latter lead to intramolecular vibrations. For a 
non-degenerate valence electronic state the linear electron-molecular vibration (EMV) 
coupling constants are non-zero only for the ag molecular vibrations. 

However, a quantitative description seems far from complete. The main reason is 
the great variety of Q-ID CT crystals. The phase phonon theory of Rice and co-workers 
[l, 21 describes fairly well crystals with regular chains displaying metal-like conductivity. 
However, in the case of more localized electronic states, as happens in dimerized, 
trimerized and tetramerized compounds, electron correlations should be treated 
explicitly. The cluster model [3-71 seems to be more effective in these cases. Painelli 
and Girlando [8] showed that the linear response theory [3-71 and vibronic adiabatic 
Mulliken method [8,9] give almost identical results in cases when vibronic lines do not 
overlap with the cr band. 
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The standard but rather tedious procedure to determine EMV parameters consists in 
fitting the appropriate theoretical expression to experimental reflectance or conductivity 
data. Several attempts have been made to offer alternatives. Firstly, an estimate of EMV 
coupling constants g, by a quantum chemical calculation for an isolated molecule was 
reported by Lipari et a1 [lo]. Secondly, the differences between the bond lengths of 
neutral and charged molecules gave an independent estimate of g, [ l l ] .  Thirdly, all EMV 
parameters (g,, frequencies, w, and natural widths y, of the originally uncoupled ath 
ag modes) were determined from a plot of the real part Re[l/u(w)] of the inverse 
complex conductivity [12]. This method works when one CT transition is much stronger 
than the others and also it is necessary to measure the reflectance in a very wide frequency 
range to ensure good quality of the Kramers-Kronig transformation. Fourthly, in cases 
when w, are much smaller than the frequency wCT of CT excitation, EMV constants may 
be obtained from the positions of lines in Raman and IR spectra [9, 131. 

wCT no 
longer needs to be fulfilled and we shall discuss the conductivity spectra calculated with 
the linear response and vibronic adiabatic Mulliken methods. 

In this paper we shall generalize the latter case so that the condition W ,  

2. Theory 

In the cluster approach [3-6] the complex conductivity of Q-1D n-merized molecular 
semiconductors is obtained by superposition of linear responses of isolated n-mers (n = 
2,3 ,4)  to an external electromagnetic field; the role of the interaction between n-mers 
was discussed in [7]. The microscopic model is defined by the following Hamiltonian: 

H =  He + Hv + Egnn iQn . i  - E S P  (1) 
,.I 

where He and H ,  are the Hamiltonians of the radical electrons and ag intramolecular 
modes of vibration, respectively. Here, h = 1 is used for simplicity. The term radical 
here denotes the electrons transferred from donors to acceptors. Usually, H e  is taken in 
the Hubbard form with parameters U (on-site repulsion energy of two electrons with 
opposite spins) and t (transfer integral between the neighbouring sites) to describe the 
electroniccorrelations explicitly. EMW coupling is expressed by the third term in equation 
( l ) ,  where Q,,[ denotes the normal-mode coordinate corresponding to the symmetric 
vibration CY, and n, is the occupation number operator for the ith monomer. The last 
term in equation (1) describes the interaction of the electric dipole moment p of the 
radical electrons with an externally applied electric field E .  

As shown in [3 ,4 ]  for dimers and in [5] for symmetric trimers, one can determine an 
IR-active antisymmetric combination of Q,., and obtain the complex conductivity in the 
form 

U( W )  = - i W N d  ( e2A * /4)[XcT (0) -- ' - D( W ) ]  - ' (2) 
where 

Here, Nd is the number of n-mers per unit volume, A denotes the distance of CT ( A  = a 
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for a dimer and 2a for a trimer; a is the intermolecular spacing), Mp = (/3 I6n 1 1) is the 
matrix element of the charge difference operator 6n (equal to n l  - n2 for a dimer and 
to n l  - n3 for a symmetric trimer), wpl  = Ep - El,  1/3) and Ep are eigenfunctions and 
eigenvalues of He,  and /3 = 1 labels the ground state. 

The number of electronic excitations with the frequencies wpl depends on the kind 
of molecular organization in the stacks and on the stoichiometry. There is a single excited 
state in a dimer with one radical electron and wp l  = wCT = 2-, where A is the 
energy of monomer distortion due to cation influence enhanced by EMV coupling [4]. In 
a symmetric dimer with two radical electrons, only one CT transition with the energy 
wCT = U/2 + v U 2 / 4  + 4t2 [3] is allowed. There are two allowed CT transitions in a 
symmetric trimer with two electrons, which roughly correspond to electronic transfers 
resulting in singly and doubly occupied monomers. For reasonable parameter values the 
latter transition can be ignored for the frequencies in the region of w, and only one term 
remains in equation (3). In the same way it is possible to find a dominant electronic CT 
excitation in the tetramerized compounds [6]. Thus, in all cases in the frequency range 
w = w,, equation (3) can be simplified as 

XCT(lC.’) = 2M2wCT/(W& - - iwYCT)  ( 5 )  
where wCT denotes the frequency up, of the dominant electronic excitation. 

The frequencies of IR bands are obtained from the poles of a( w ) .  The intramolecular 
vibrations are all coupled together through their common interaction with the CT exci- 
tation but, for an isolated vibronic band, which is well separated from the others, we can 
find the band frequency SZ, from an analysis of the real part of a(w) :  

Q, = [(U& + @2,)/2 - { [ ( W C r  - wf,)/2I2 + 2M2”wn~CT}1’2~’’2 (6) 
where the damping is neglected. For U,  e wCT, equation (6) can be reduced to the form 
found in [SI: 

SZn = 0,(1 - 2M2gZ, /~CT~n) i ’2 .  (7) 
So, if the ‘unperturbed’ frequencies w, are determined (e.g. from the Re[l/o(w)] 
spectrum [ 12]), one can calculate the EMV coupling constantsg, from equation (6) if the 
positions of the bands in Re[a(w)] are known. 

Recently, a new expression for the complex conductivity of dimerized CT crystals has 
been offered in [8]: 

where C2, and re denote the perturbed (i.e. those observed in IR  conductivity spectra) 
frequencies of ag vibrations and damping factors. The electronic CT polarizability is given 
by equation (3); A, can be found as the appropriate linear combinations of g; [8]. 

It has been shown by Painelli and Girlando [8] that the real part of the frequency- 
dependent conductivity given by equation (8) is virtually identical with that calculated 
from equation (2) for w, + wCT. However, in most organic Q-1D semiconductors the CT 
band is situated at around 3000 cm-I and this condition is not satisfied. Conductivity 
spectra calculated by the linear response method (equation (2)) and vibronic adiabatic 
Mulliken method (equation (8)) are shown in figures l (a )  and l (b) ,  respectively. The 
absolute values of Re(a) correspond to the MEM(TCNQ)~ salt [4]. It should be noted that 
the curves in figures l (a)  and l (b)  differ mostly in the high-frequency slope of vibronic 
C%N band (U*), reflecting Fano resonance behaviour in the case of the linear response 
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1500 2000 2500 W[Cm-'] the MEM(TCNQ)* Salt. 

Figure 1. Conductivity spectra calculated by (a) 
the linear response and (b) the vibronic adiabatic 
Mulliken methods, in the vicinity of the b N  
band. The absolute values of Re(o) correspond to 

approach. We have tried the plots of other optical functions ( ~ ~ ( w ) ,  E ~ ( w ) ,  etc.) but no 
obvious advantages over Re cr plots that allow us to discriminate between the two 
theoretical approaches were found 

3. Discussion of the experimental results 

Among the Q-iD CT molecular solids a vast group is formed by crystals with cluster-like 
chain structure. In particular, dimerized, trimerized and tetramerized salts are widely 
known. In these cases the tetracyano-p-quinodimethane (TCNQ) molecules or ions are 
grouped in the n-merized weakly interacting units with some localization of electronic 
states. 

The TCNQ complex salts with N-methyl derivatives of pyridine (e.g. NM~PY(TCNQ)~, 
NMe4MePy(~c~o) ,  and NMe2,6MePy(~c~a) , ) ,  with tetraethylammonium 
(T~EA(TCNQ),), with methylethylmorpholinium (MEM(TCNQ)2) and methyl-N-ethyl- 
benzimidazolium (MNEB(TCNQ)~) as well as the simple salt of TCNQ with potassium (K- 
TCNQ) can be considered as dimerized salts. In these and other similar salts the TCNQ are 
stacked plane to plane, in centrosymmetrically related pairs, approximately per- 
pendicular to the stacking axis. There is favourable exocyclic-double-bond to quinonoid- 
ring overlap between adjacent molecules within each pair, but there is no direct overlap 
between the pairs. Within a pair, the mean perpendicular separation between the two 
TCNQ is a little smaller than the spacing between adjacent pairs [14]. The intradimer 
transfer integrals are usually ten times higher than the transfer integrals between adjac- 
ent pairs [15, 161. 

The salts of TCNQ with caesium (CS,(TCNQ)3) or S-methylthiouronium 
((MT)~(TcNQ)~ .2H20)  belong to the group of trimerized salts. The TCNQ molecules are 
stacked in groups of three with no direct overlap between adjacent triads. Usually, 
within the triads, two types of TCNQ unit are observed: TCNQ' and TCNQ- or TCNQ-a 
and T C N Q ~  - l .  The salts with triethylammonium (TEA'), methyltriphenylphosphonium 
(MTPP+) or methyltriphenylarsonium (MTPA') are structured with groups of four TCNQ 
with no direct overlap between adjacent tetrads. Usually, two types of overlap are 
observed within the tetrads. Therefore it is better to regard them as pairs of partially 
interacting dimers. The magnitude of the ratio of the intradimer to interdimer transfer 
integrals confirms that the interaction between dimers can be considered as weak. Of 
course, the charge distribution is not the same for both moieties of the TCNQ dimer [17]. 

The polarized IR reflectivity of the above-mentioned n-merized TCNQ salts as well as 
others has been carefully studied by different investigators [4,8-13, 18-30]. According 
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Table 1. Frequencies of the c‘r and w 2  bands of the TCNQ salts. 

Salt 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

TEA( TCNQ)2 
MNEB(TCNQ), 
(MT)~(TCNQ)~ .2H20 

MTPA(TCNQ), 
NMe2,6MePy(~c~o) ,  
NMe4MePy(~c~o) ,  
NM~PY(TCNQ)~ 

MTPP(TCNQ) 2 

TeEA(TCNQ), 

CSdTCNQ), 
MEM(TCNQ)2 

2500 
2900 
3000 
2800 
2500 
2460 
2750 
2600 
3600 
3450 
3550 

2070 
2155 
2115 
2150 
2100 
2090 
2155 
2135 
2150 
2150 
2165 

to current interpretations of the IR spectrum of TCNQ salts, it consists of a broad and 
strong electronic band at frequency wa and a series of relatively narrow lines (U,) which 
are regarded as the ag modes activated by means of the strong coupling with the electronic 
motion. A Kramers-Kronig analysis of reflection data with physically reasonable extra- 
polations is generally used to obtain the real part of the dielectric function and 
conductivity for mfrequencies a(w) = E , ~ E ~ ( U ) .  Availingourselves of the above papers 
we were in a position to analyse the shape of the band at o2 = 2200 cm-’ attributed to 
the totally symmetric (ag) mode of the C k C  group stretching. This mode was chosen 
taking into account their intensity as well as localization near the CT band. 

Parameters of both the CT and the w 2  bands are given in table 1, whereas figures 2 
and 3 show typical experimental conductivity spectra (from 1500 to 4000 cm-’) of some 
selected salts. We note that the curves of figure 2 are highly asymmetrical. The high- 
frequency wings are more abrupt than their low-frequency counterparts. Such a behav- 
iour of a(w)  near the totally symmetric modes of vibration proves that the resonance 
interactions of the vibrations with electronic systems occur for the o2 mode. The line . 

1500 2500 3500 w[cm-’I 

Te E A ( TC N Q l2  

,-__-----. 

200 

0 , I I 

1500 2500 3500 w tcm-ll 

Figure 2. Experimental conductivity spectra of 
the salts well described by the linear response 
approach (experimental data are taken from [20, 
22,241). from [4,31]). 

Figure 3. Experimental conductivity spectra of 
the salts not very well described by the linear 
response approach (experimental data are taken 
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asymmetry as well as a specific dip in the high-frequency slope of the vibronic o2 band 
testify to Fano resonance behaviour [32], typical in the case of the linear response 
approach (see figure l (a)  also). The same behaviour of the w 2  band was observed for 
the salts 1-8 in table 1. 

However , some n-merized TCNQ salts display a different spectral behaviour (figure 
3). Salts 9-11 show a lack of pronounced Fano resonance behaviour and indicate that 
the linear response approach is not appropriate for these salts, in all respects. We agree 
with Painelli and Girlando [8] that the vibronic adiabatic Mulliken theory is more 
adequate for some salts, in particular for salts 9-11. Of course, this comparison of the 
data collected in table 1 does not solve the problem of which conductivity expression, 
equation (2) or (8), is more appropriate for describing the optical properties of n-merized 
molecular semiconductors. From the theoretical point of view we show in the final part 
of this section that the linear response theory result is more universal and can be 
reproduced within the framework of the vibronic adiabatic Mulliken approach as well: 
From the experimental viewpoint it is clear that more efforts are needed and we propose 
on the basis of figure 1 that more thorough IR investigations in the regions of the high- 
frequency wings of the ag vibronic bands are needed. 

Our approach not only describes the form of the band coupled to the CT band (e.g. 
the w 2  band) but also permits us to propose a simple way of calculating the EMV coupling 
constants. From equation (6), one obtains 

The parameter M 2  is related to electronic excitations (see equation (5)) and can be either 
calculated theoretically [MI or estimated directly from experimental data. In the latter 
case we note that the peak value ( J , ( w ~ ~ )  of the CT band in the Re[a(o)] spectrum does 
not depend appreciably on the EMV coupling; so we can neglect D ( o )  in equation ( 2 )  for 
U = wCT and find that 

g’, = [ U $ T W ’ ,  - Q’,(U$T U’,) + Q : ] / 2 M 2 0 , U ~ ~ .  (9) 

(J 1 ( CT = (Nd e A /4) ( 2  * CT / Y  CT >. (10) 
Finally, from equations (9) and (10) we obtain 

where g, is expressed in reciprocal centimetres if CL),, wCT, Q, and yCT are also in 
reciprocal centimetres, Nd in reciprocal cubic centimetres, A in centimetres and (JI(CC)CT) 
in siemens per centimetre. The EMV coupling constants calculated from equation ( l l ) ,  
for K-TCNQ, are collected in table 2 .  The data used for the calculation originate from 
Painelli and Girlando [8]. For comparison, our values of EMV coupling constants found 
from equation (l), the EMV coupling constant used in the calculation of the vibronic 
spectrum of K-TCNQ by the vibronic adiabatic Mulliken model [8], and the EMV coupling 
constant found by a quantum chemical calculation for an isolated molecule [lo] are also 
shown in table 2. 

The agreement between the EMV coupling constants found from equation (11) and 
those obtained experimentally by Painelli et a1 [8] is rather good. Both series of data 
differ from the values calculated by Lipari et a1 [lo] from quantum chemical evaluation, 
performed for the isolated TCNQ molecule. 

In order to understand the difference between equations ( 2 )  and (8) we propose the 
following modification of the approach used in [8, 91. The time-dependent electronic 
dipole moment ,uCT(t) is generated by the external field E(t):  

dUCT(l) = 1‘ qCT(l - t‘)E(t’)  dt’  (12) 
--r 
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Table 2. The EMV coupling constants of K-TCNQ 

g, (meV (cm-7)  
a, 
mode From [lo] From [8] This paper 

w2 52.5 54 49 (397) 
0 3  131.0 57 50 (405) 
0 4  48.6 62 63 (506) 
U5 28.4 38 45 (364) 
W 6  29.4 8 9.5 (77) 
U7 32.6 28 30 (242) 
WR 2.2 19 21 ( 172) 
WY 24.0 41 46 (372) 

where qCT(t - t’) is the purely electronic response function; its Fourier transform gives 
the electronic susceptibility (equation (3)). The total dipole moment p(t) is given by the 
sum of pm(t) and the dipole moment produced in the electronic system by intramolecular 
vibrations due to EMV coupling, where p itself acts as an external field on the molecular 
vibrations, which in turn acts as a surplus external field on the electrons: 

I’ 

p(t) = p C T ( t )  -I- 1‘ q n ( t  - t ’ )  dt’ j-, q v ( t ’  - t ” )p( t ” )  dt”.  (13) 
--2 

So, p(t) is determined in a self-consistent way from equation (13) (compare with equation 
(B2) in [8]). Fourier transformation of equation (13), gives the following expression for 
the complex susceptibility: 

x(w> = X C T ( O )  + x C T ( w > x V ( w > x ( w )  

x(o> = x C T / ( I  - X C T x V )  = (x& - x V 1 - I .  

(14) 

(15) 

or 

The latter result (15) coincides exactly with equation (2) obtained by standard linear 
response theory. 

4. Conclusions 

We have examined two expressions proposed for the complex conductivity of n-merized 
Q-iD organic semiconductors by Rice and co-workers [2-4] and by Painelli er a1 [8]. So 
far no final decision has been reached in favour of any of these models on the basis of 
existing experimental data. Careful spectral measurements in the regions close to the 
high-frequency wing of ag vibronic bands are recommended. 

A simple relation between the EMV coupling constant g, and the position of the 
corresponding vibrational band in the spectrum of the real part of the conductivity is 
obtained. The restriction oa 4 oCT required by other workers is lifted in this paper. We 
propose the following way to extract g, from experimental data. 

(i) Obtain the number of n-mers per unit volume and intermolecular separation 
distance from structural data. 

(ii) Determine om, crl(oCT) and ym as the position, peak value and half-width of 
the dominant electronic CT band, respectively. 
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(iii) Find Q, and o, as the frequencies of vibronic bands in Re(a) and Re(l/a) 

(iv) Calculate g, according to equation (11). 

Theg,-values for K-TCNQ found in this manner agree with those obtained by a tedious 
fitting procedure. 

Finally, a modification of the vibronic adiabatic Mulliken method is proposed and 
the expression obtained by Rice and co-workers is determined in the framework of the 
vibronic adiabatic Mulliken approach. 

spectra, respectively. 
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